Diese Webseite nutzt Cookies

Diese Webseite verwendet Cookies zur Verbesserung der Benutzererfahrung. Indem Sie weiterhin auf dieser Webseite navigieren, erklären Sie sich mit der Verwendung von Cookies einverstanden.

Falls Sie Probleme mit einer wiederauftauchenden Cookie-Meldung haben sollten, können Ihnen diese Anweisungen weiterhelfen.

Essenzielle Cookies ermöglichen grundlegende Funktionen und sind für die einwandfreie Funktion der Website erforderlich.
Statistik Cookies erfassen Informationen anonym. Diese Informationen helfen uns zu verstehen, wie unsere Besucher unsere Website nutzen.
Mitglied werden Sponsor werden

Inversion (Geophysik)

Als Inversion oder inverse Modellierung bezeichnet man in der Geophysik Rechenprozesse, die aus den Daten ein geologisches Modell erzeugen.

Die Inversion ist ein zentrales Thema der Geophysik und kann hier nur angedeutet beschrieben werden. Neben linearen und nicht-linearen Verfahren spielt oft auch 'trial and error' eine Rolle, wobei teils manuell nach einer Lösung gesucht wird. Wesentlich ist oft auch die Wahl eine Ausgangsmodells, das dann im Zuge der Inversion an die Messdaten angepasst wird.

Bei vielen geophysikalischen Verfahren ist die Inversion nicht eindeutig, sondern eine Vielzahl von Modellen kann die Messdaten befriedigen (z.B. Gravimetrie). Hier sind dann einschränkende Informationen (constrains) in den Prozess zu importieren. Gelegenlich werden auch Messdaten unterschiedlicher Messungen (z.B. Seismik und Elektrik zusammen invertiert (joint inversion).

Joint inversion

Ein zentrales Ziel der Interpretation geophysikalischer Daten ist es, ein Modell des Untergrundes zu entwickeln, das neben strukturellen Informationen auch Gesteins- und Fluideigenschaften abbildet und zwar gegebenenfalls auch in unterschiedlichen Skalen. Hierzu ist es oft sinnvolle Messdaten unterschiedlicher geophysikalischer Verfahren zu kombinieren. Am konsequentesten erfolgt dies in einer zusammengefassten Inversion (joint inversion), bei der alle Daten in einen gemeinsamen Inversionsprozess eingespeist werden. Eine Herausforderung sind dabei oft die sehr unterschiedlichen Skalen. Ein Beispiel ist hier die Kombination von Oberflächendaten mit Bohrlochdaten.

Joint inversion wird heute in vielen Bereichen der Geophysik angewendet, von der Ingenieurgeophysik bis zu Untersuchungen von Kruste und Mantel.

Literatur

W. Menke, “Geophysical Data Analysis: Discrete Inversion Theory”, Vol. 45; Academic Press, 1989.

R. Snieder and Jeonnot Trampert, “Inverse Problems in Geophysics”, samizdat.mines.edu,

Breitzke, M., L. Dresen, J. Csókás, á. Gyulai and T. Ormos, “Paratmeter Estimation and Fault Detection by Three-Component Seismic and Geoelectrical Surveys in a Coal Mine,” Geophysical Prospecting, Vol. 35, No. 3, 1987, pp. 832-863.

Dasgupta, S., P., “A Note on the Conversion of DC-Dipole Sounding Curves to Schlumberger Curves,” Geoexploration, Vol. 22, No. 1, 1984, pp. 43-45. doi:10.1016/0016-7142(84)90004-8

Dell, P.’Aversana, “Joint Inversion of Seismic, Gravity and Magnetotelluric Data Combined with Depth Seismic Imaging,” EMG International Workshop, Capri, 2007

Dobróka, M. and L. Volgyesi, “Inversion Reconstruction of Gravity Potential Based on Gravity Gradients,” Mathematical Geosciences, Vol. 40, No. 3, 2008, pp. 299-311. doi:10.1007/s11004-007-9139-z

Dobróka, M. and N. P. Szabó, “Combined Global/Linear Inversion of Well-Logging Data in Layer Wise Homogeneous and Inhomogeneous Media,” Acta Geodaetica et Geophysica Hungarica, Vol. 40, No. 2, 2005, pp. 203-214. doi:10.1556/AGeod.40.2005.2.7

Dobróka, M. N. P. Szabó, E. Cardelli and P. Vass, “2D Inversion Borehole Logging Data for Simultaneos Fetermination of Rock Interfaces and Petrophysical Parameters,” Acta Geodaetica and Geophysica Hungarica, Vol. 44, No. 4, 2009, pp. 459-482. doi:10.1556/AGeod.44.2009.4.7

Dobróka, M., “Introduction to Geophysical Inversion (in Hungarian),” Miskolci Egyetemi Kiadó, Miskolc, 2001, 209 p.

Dobróka, M., “The Establishment of Joint Inversion Algorithms in the Well-Logging Interpretation (in Hungarian),” Scientific Report for the Hungarian Oil and Gas Company, University of Miskolc, Miskolc, 1993.

Dobróka, M., á. Gyulai, T. Ormos, J. Csókás and L. Dresen, “Joint Inversion of Seismic and Geoelectric Data Recorded in an Underground Coal Mine,” Geophysical Prospecting, Vol. 39, No. 5, 1991, pp. 643-665. doi:10.1111/j.1365-2478.1991.tb00334.x

Doetsch, J., N. Linde, I. Coscia, S. A. Greenhalgh and A. G. Green, “Zonation for 3D Aquifer Characterization Based on Joint Inversions of Multimethod Crosshole Geophysical Data,” Geophysics, Vol. 75, No. 6, 2010, pp. G53-G64. doi:10.1190/1.349647

Drahos, “Inversion of Engineering Geophysical Penetration Sounding Logs Measured along a Profile,” Acta Geodaetica et Geophysica Hungarica, Vol. 40, No. 2, 2005, pp. 193-202. doi:10.1556/AGeod.40.2005.2.6

Gallardo, L., A. and M. A. Meju, “Joint Two Dimensional DC Resistivity and Seismic Traveltime Inversion with Cross-Gradients Contrains,” Journal of Geophysical Research, Vol. 109, No. B3, 2004, pp. B03311-B03321.

Gallardo, L., A., Delagdo, M. A. Perez-Flores and E. Gomez-Trevino, “A Versatile Algorithm for Joint 3D Inversion of Gravity and Magnetic Data,” Geophysics, Vol. 68, No. 3, 2003, pp. 949-959. doi:10.1190/1.1581067

Gyula, A. “Parameter Sensitivity of Underground DC Measurements,” Geophysical Transactions, Vol. 35, No. 3, 1989, pp. 209-225.

Gyulai, A. and T. Ormos, “A New Procedure for the Interpretation of VES Data: 1.5-D Simultaneous Inversion Method,” Journal of Applied Geophysics, Vol. 41, No. 1, 1999, pp. 1-17. doi:10.1016/S0926-9851(98)00034-2

Gyulai, A. and T. Ormos, “New Geoelectric-Seismic Joint Inversion Method to Determine 2-D Structures for Different Layer Thickness and Boundaries,” Geophysical Transactions, Vol. 44, No. 3-4, 2004, pp. 273-300.

Gyulai, A., M. Baracza and É. Tolnai, "The Application of Joint Inversion in Geophysical Exploration," International Journal of Geosciences, Vol. 4 No. 2, 2013, pp. 283-289. doi: 10.4236/ijg.2013.42026.

Gyulai, A., T. Ormos and M. Dobróka, “A Quick 2-D Geoelectric Inversion Method Using Series Expansion,” Journal of Applied Geophysics, Vol. 72, No. 4, 2010, pp. 232-241. doi:10.1016/j.jappgeo.2010.09.006

Haber, E. and D. Oldenburg, “Joint Inversion: A Structural Approach,” Inverse Problems, Vol. 13, No. 1, 1997, pp. 63-77. doi:10.1088/0266-5611/13/1/006

Hering, A., R. Misiek, á. Gyulai, T. Ormos, M. Dobróka and L. Dresen, “A Joint Inversion Algorithm to Process Geoelectric and Surface Wave Data, Part. I.,” Geophysical Prospecting, Vol. 43, No. 2, 1995, pp. 153-156. doi:10.1111/j.1365-2478.1995.tb00128.x

Jegen, R., R. W. Hobbs, P. Tartis and A. Chave, “Joint Inversion of Marine Magnetotelluric and Gravity Data Incorporating Seismic Constrains. Preliminary Results of Sub-Basalt Imaging off the Farve Shelf,” Earth and Planetary Science Letters, Vol. 282, No. 1-4, 2009, pp. 47-95. doi:10.1016/j.epsl.2009.02.018

Kis, M., “Investigation of near Surface Structures with Joint Inversion of Seismic and Direct Current Geoelectric Data (in Hungarian),” Ph.D. Thesis, University of Miskolc, Miskolc, 1998.

Kumar, R. and U. C. Das, “Transformation of Schlumberger Apparent Resistivity to Dipole Apparent Resistivity over Layered Earth by the Application of Digital Linear Filters,” Geophysical Prospecting, Vol. 26, No. 2, 1978, pp. 352-358. doi:10.1111/j.1365-2478.1978.tb01598.x

Li, Y. and D. W. Oldenburg, “Joint Inversion of Surface and Three Component Borehole Magnetic Data,” Geophysics, Vol. 65, No. 2, 2000, pp. 540-552. doi:10.1190/1.1444749

Linde, N., A. Tryggvason, J. E. Peterson and S. S. Hubbard, “Joint Inversion of Crosshole Radar and Seismic Travel Times Acquired at the South Oyster Bacterial Transport Site,” Geophysics, Vol. 73, No. 4, 2008, pp. G29-G37. doi:10.1190/1.2937467

Margrave, G., F., R. R. Steward and J. A. Larsen, “Joint PP and PS Seismic Inversion,” The Leading Edge, Vol. 20, No. 9, 2001, pp. 1048-1052. doi:10.1190/1.1487311

Menke, W., “Geophysical Data Analysis-Discrete Inverse Theory,” Academic Press, Inc., London, 1984.

Misiek, R., A. Liebig, á. Gyulai, T. Ormos, M. Dobróka and L. Dresen, “A Joint Inversion Algorithm to Process Geoelectric and Surface Wave Seismic Data Part II,” Geophysical Prospecting, Vol. 45, No. 1, 1997, pp. 65-85. doi:10.1046/j.1365-2478.1997.3190241.x

Salát, P., Gy. Tarcsai, L. Cserepes, M. Vermes and D. Drahos, “Information-Statistical Methods of Geophysical Interpretation (in Hungarian),” Tankonyvkiadó, 1982.

Salát, P., Gy. Tarcsai, L. Cserepes, M. Vermes and D. Drahos, “Information-Statistical Methods of Geophysical Interpretation (in Hungarian),” Tankonyvkiadó, 1982

Sharma, S., P. and S. K. Verma, “Solutions of the Inherent Problem of the Equivalence in Direct Current Resistivity and Electromagnetic Methods through Global Optimalisation and Joint Inversion by Successive Refinement of Model Space,” Geophysical Prospecting, Vol. 59, No. 4, 2011, pp. 760-776. doi:10.1111/j.1365-2478.2011.00952.x

Soyer, Wolfgang, Randall Mackie, Stephen Hallinan, Alice Pavesi, Gregg Nordquist, Aquardi Suminar, Rindu Intani and Chris Nelson, Geologically consistent multiphysics imaging of the Darajat geothermal steam field, First Break, Vol 36, No 6, 2018 pp. 77 - 83

Spitzer, K., “A 3-D Finite Difference Algorithm for DC Resistivity Modelling Using Conjugate Gradient Methods,” Geophysical Journal International, Vol. 123, No. 3, 1995, pp. 902-914. doi:10.1111/j.1365-246X.1995.tb06897.x

Szabó, N., P., “Global Inversion of Well-Logging Data,” Geophysical Transactions, Vol. 44, No. 3-4, 2004, pp. 313-329.

Vozoff, K. and D. L. B. Jupp, “Joint Inversion of Geophysical Data,” Geophysical Journal of the Royal Astronomical Society, Vol. 42, No. 3, 1975, pp. 977-991. doi:10.1111/j.1365-246X.1975.tb06462.x

Weitere Literatur siehe unter Literaturdatenbank und/oder Konferenzdatenbank unter 'inversion'.

Weblinks

www.spektrum.de/lexikon/geowissenschaften/inversion/76

www.resistivity.net/invprob/invprob.pdf

Videos

https://www.youtube.com/watch?v=o8psR4RXLeY

zuletzt bearbeitet September 2020, Änderungs- oder Ergänzungswünsche bitte an info@geothermie.de