Mitglied werden Sponsor werden

Bohrtechnik

Geothermische Tiefbohrung. Quelle: Anger
Geothermische Tiefbohrung. Quelle: Anger

Die verwendete Bohrtechnik hängt vom Gesteinsuntergrund und der zu erreichenden Bohrtiefe ab, für das die Bohrtechnik eine Vielzahl von Geräten entwickelt hat.

Bohrverfahren

Grundsätzlich finden zwei Verfahren Anwendung:

  • schlagendes Bohren: das Gesteinsmaterial wird durch Keilwirkung zertrümmert.
  • drehendes Bohren: das Gestein wird durch sich drehende Bohrmeißel zerspant, z. B. mit dem Rotary-Bohrverfahren.
  • Hochfrequenz-Bohrtechnik (SONIC): Das Bohrwerkzeug wird über einen Oszillator im Bohrkopf in Schwingung versetzt. Gleichzeitig kann das Bohrwerkzeug rotiert werden (ROTOSONIC). Der Vorteil besteht darin, dass durch die erzeugte Schwingung die Mantelreibung am Bohrgestänge auf ein Minimum reduziert wird. Das Gestein wird bei diesem Verfahren sowohl zerspant als auch zertrümmert.

Bohrwerkzeuge

Bei geologischen Bohrungen verwendete Werkzeuge sind z. B.:

  • RollenmeißelBohrkronen, zur Härtung teils mit Industriediamanten besetzt um zu raschen Verschleiß und Überhitzung der Bohrkrone zu vermeiden, wird im Bohrloch während des Bohrvorgangs meist eine Spülflüssigkeit umgepumpt, deren Druck auch der Stabilisierung des Bohrloches dient.

Zu den beim Tiefbohren verwendeten Anlagen siehe auch unter Bohranlagen. Dort ist auch ein Technologiebaum zu den wesentlichsten Bestandteilen einer Bohranlage zu finden.

'Vertikalbohrungen' sind die „normale“ Form der Bohrung - mehr oder weniger senkrecht nach unten. Es gibt aber auch Anwendungen, bei denen 'Horizontalbohrungen' nötig sind, z. B. beim Tunnelbau. Moderne Techniken erlauben Tiefbohrungen in weiträumigen Ablenkungen aus der Vertikalen in Richtung Horizontale. Man spricht dann von Richtbohren oder Richtbohrtechnik. Mit ihr lassen sich Bohrziele (targets), wie wasserführende Störungen direkt anfahren. Ein Fachbegriff ist hier 'geosteering'.

Wissenschaftliche Bohrungen benötigen unzerstörtes Gesteinsmaterial, von dem auch die Herkunftstiefe bekannt sein muss. Zu diesem Zweck wurden Techniken entwickelt (das so genannte Kernbohren), die die Förderung von Bohrkernen aus dem Bohrloch erlauben. Die mit ihrer Hilfe gewonnenen Bohrprofile geben die geologischen Verhältnisse des Untergrundes metergenau wieder. Auch das in der Spülung herausgeförderte Bohrklein erlaubt eine Abschätzung der Herkunftstiefe der entnommenen Probe (berechnet aus Aufstiegsgeschwindigkeit und der dazu benötigten Zeit).

Anwendung in der Geothermie

In der Tiefengeothermie werden also vorwiegend die folgendenden Bohrtechniken genutzt:

  • Rotarybohrverfahren
  • Standard-Kernbohrverfahren
  • Seilkernbohrverfahren
  • Lufthebebohrverfahren 

Neue Bohrverfahren

Eine Möglichkeit zur Erhöhung der Kosteneffizienz beim Abteufen von tiefen Geothermie-Bohrungen ist die Verbesserung der Gesteinszerstörung und damit die Erhöhung der Bohrgeschwindigkeit. Durch den Einsatz neuer Bohrwerkzeuge lassen sich die teuren Mietkosten für die schweren Tiefbohranlagen reduzieren, da die reinen Bohrzeiten reduziert werden können.

Da konventionelle Bohrwerkzeuge für die Öl- und Gaserkundung im Sedimentgestein entwickelt und optimiert wurden, können diese in harten schwer bohrbaren Formationen für die Tiefe Geothermie nur sehr uneffektiv eingesetzt werden (geringe Bohrgeschwindigkeiten, hoher Verschleiß). Die Folge sind hohe Bohrkosten und ein erhöhtes wirtschaftliches Risiko. Eine Weiter- bzw. Neuentwicklung von anderen Bohrverfahren ist bei petrothermaler Geothermie zu erwarten. Sie nutzt das heiße, harte Gestein im Untergrund, das über Bohrungen und verschiedene Stimulationsverfahren erschlossen wird.

Elektro-Impuls-Verfahren

Mit der Entwicklung und Erprobung des Elektro-Impuls-Verfahrens (EIV) kann eine völlig neuartige Form der Gesteinszerstörung für tiefe Geothermiebohrungen nutzbar gemacht werden. Das Prinzip beruht auf elektrischen Entladungen unter sehr hohen Spannungen, welche zwischen zwei Elektroden durch das Gestein geleitet werden und dabei dessen Gefüge durch hohe Temperaturen und Drücke schwächen. Das Verfahren befindet sich noch im Forschungsstadium.

Flame-Jet-Drilling

Hier befindet sich der Bohrer nicht im direkten Kontakt mit dem Untergrund. Verschleiß am Bohrmeißel ist also nahezu ausgeschlossen. Beim Flame-Jet-Drilling befinden sich am Bohrkopf Öffnungen, über die eine sehr heiße Flamme ins Bohrloch gebracht wird, die das Gestein spaltet und wegsprengen lässt. Flame-Jet-Drilling befindet sich ebenfalls noch im Forschungsstadium. 

Literatur

Anders, Erik, Mathias Voigt, Franziska Lehmann: E-volution der Bohrtechnik - mit Hochspannung durchs Hartgestein. In: GTE Nummer 88 (2018), S. 24 

Buja, H., O.: Grundlagen -Gerätetechnik -Anwendungen, Handbuch der Bohrtechnik. Bd. 1. Aufl. Norderstedt Books on Demands, 2012 

Bundesamt für Energie & Foralith: Innvoative Bohrtechniken. Ein Weg zur Förderung der Wirtschaftlichkeit geothermischer Bohrungen. Bern : 1998 

Hatzsch, P.: Tiefbohrtechnik. Stuttgart : Enke, 1991 

Marx, C.: Entwicklungsschwerpunkte auf dem Gebiet der Bohrtechnik (1951-2001). In: Berg- und hüttenmaännischer Tag (2001) 

Teodoriu, C.: Bohrmethoden für Tiefenbohrtechnik: vom konventionellen Rotary- zum Laser-Bohrverfahren. In: GTE Nummer 80 (2014), S. 14-18 

Ukelis, D., Zorn, R., Friderich, J., Steger, H., Linder, P., Meier, S., Burkhardt, F: Verlaufsmessungen und Richtbohrtechnik, Rückbau und Recouvering von Erdwärmesonden. In: GTE Nummer 86 (2017), S. 12 

Gec-co global engineering & consulting: Vorbereitung und Begleitung bei der Erstellung eines Erfahrungsberichts gemäß § 97 Erneuerbare-Energien-Gesetz, Teilvorhaben II b): Geothermie, Zwischenbericht, 2018

     

Weblink

https://de.wikipedia.org/wiki/Bohrung (Geologie)