Diese Webseite nutzt Cookies

Diese Webseite verwendet Cookies zur Verbesserung der Benutzererfahrung. Indem Sie weiterhin auf dieser Webseite navigieren, erklären Sie sich mit der Verwendung von Cookies einverstanden.

Falls Sie Probleme mit einer wiederauftauchenden Cookie-Meldung haben sollten, können Ihnen diese Anweisungen weiterhelfen.

Essenzielle Cookies ermöglichen grundlegende Funktionen und sind für die einwandfreie Funktion der Website erforderlich.
Statistik Cookies erfassen Informationen anonym. Diese Informationen helfen uns zu verstehen, wie unsere Besucher unsere Website nutzen.
Mitglied werden Sponsor werden

Kugelfunktion

Die Kugelflächenfunktionen sind ein vollständiger und orthonormaler Satz von Eigenfunktionen des Winkelanteils des Laplace-Operators. Dieser Winkelanteil zeigt sich, wenn der Laplace-Operator in Kugelkoordinaten geschrieben wird. Die Eigenwertgleichung lautet:

 {\displaystyle \left({\frac {\partial ^{2}}{\partial \vartheta ^{2}}}+{\frac {\cos \vartheta }{\sin \vartheta }}{\frac {\partial }{\partial \vartheta }}+{\frac {1}{\sin ^{2}\vartheta }}{\frac {\partial ^{2}}{\partial \varphi ^{2}}}\right)Y_{lm}(\vartheta ,\varphi )=-l(l+1)Y_{lm}(\vartheta ,\varphi )}

Die Eigenfunktionen sind die Kugelflächenfunktionen Y l m ( ϑ , φ ) {\displaystyle Y_{lm}(\vartheta ,\varphi )}, dabei sind N l m {\displaystyle N_{lm}} Normierungsfaktoren und P l m ( z ) {\displaystyle P_{lm}(z)} die zugeordneten Legendrepolynome:

{\displaystyle Y_{lm}:\;\left[0,\pi \right]\times \left[0,2\pi \right]\rightarrow \mathbb {C} ,\quad (\vartheta ,\varphi )\mapsto {\frac {1}{\sqrt {2\pi }}}\,N_{lm}\,P_{lm}(\cos \vartheta )\,e^{\mathrm {i} m\varphi }} {\displaystyle \quad {\text{mit}}\quad N_{lm}:={\sqrt {{\tfrac {2l+1}{2}}\,{\tfrac {(l-m)!}{(l+m)!}}}}}

Besonders in der theoretischen Physik haben die Kugelflächenfunktionen eine große Bedeutung für die Lösung partieller Differentialgleichungen. Sie treten zum Beispiel bei der Berechnung von Atomorbitalen auf, da die beschreibende zeitunabhängige Schrödingergleichung den Laplace-Operator enthält und sich das Problem am besten in Kugelkoordinaten lösen lässt. Auch die in der Elektrostatik auftretenden Randwertprobleme können elegant durch die Entwicklung nach Kugelflächenfunktionen gelöst werden.

Bedeutung in der Geothermie

In der Geophysik und Geodäsie werden die Kugelflächenfunktionen bei der Approximation des Geoids und des Magnet- oder Gravitationsfeldes verwendet.

Weblinks

https://de.wikipedia.org/wiki/Kugelfl%C3%A4chenfunktionen

Literatur

Zu Literatur siehe:

zuletzt bearbeitet Januar 2025, Änderungs- oder Ergänzungswünsche bitte an info@geothermie.de